Central Japan Synchrotron Radiation Research Facility Project

Naoto Yamamoto¹, Y. Takashima¹, M. Katoh^{2,1}, M. Hosaka¹, K. Takami¹, H. Morimoto¹, Y. Hori³, S. Sasaki⁴, S. Koda⁵

T. Ito¹, I. Sakurai¹, H. Hara¹, W. Okamoto¹, N. Watanabe¹ and Y. Takeda¹

1. Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603 Japan,

2. UVSOR, Institute for Molecular Science, Okazaki, 444-8585 Japan, 3. High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan

4. JASRI/SPring-8, Sayo-gun, Hyogo 679-5198, Japan, 5. Saga Light Source, Tosu, Saga 841-0005, Japan

E-mail: office@nusrc.nagoya-u.ac.jp, URL: http://www.nusrc.nagoya-u.ac.jp

Introductoin

Synchrotron radiation (SR) facilities have been used successfully for basic researches in the world. However, in the Central Japan area, an SR facility as a tool not only for basic research, but also for engineering and industrial research and development is strongly required. For this purpose, the construction of a new SR facility has been under-constructed in the Central Japan area.

The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV and the natural emittance of 53 nmrad. The configuration is based on four triple bend cells with twelve bending magnets. Four of them are 5 T superconducting ones and the critical energy is 4.8 keV.

Beamlines & Accelerators

Figure 2. Spectra of photon flux from bending magnets

 $1.4 \text{ T}, 39^{\circ} \times 8$

Normal bend

Superbend

Table 1. Six beamlines constructed in the first phase

Beamlines	Energy Range	Flux	Energy Resolution
	(keV)	(photons/sec)	$(E/\Delta E)$
Hard X-ray XAFS (BL5S1)	5 - 20	1×10^{11}	7,000 @ 12 keV
Soft X-ray XAFS (BL6N1)	0.85 - 6	7×10^{10}	2,000 @ 3 keV
VUV & Photoemission Spectroscopy (BL7U)	0.03 - 0.85	1×10^{13}	10,000 @ 200 eV
Small angle X-ray Scattering (BL8S1)	8.2	7×10^{10}	2,000 @ 8.2 keV
X-ray Diffraction (BL5S2)	5 - 20	1×10^{11}	7,000 @ 12 keV
X-ray Fluorescence & Reflectivity (BL8S2)	5 - 20	1×10^{11}	2,000 @ 12 keV

Table2. Parameters of	f Accelerators
-----------------------	----------------

		J		
Storage Ring		Booster synchrotron		
Beam energy	1.2 GeV	Max. beam energy	1.2 GeV	Fo
Circumference	72 m	Circumference	48 m	tł
Current	>300 mA	Current	> 10 mA	U
Natural emittance	53 nmrad	RF frequency	500 MHz	
Betatron tune	(4.72, 3.23)			
RF frequency	500 MHz	Injector linac		
RF Voltage	500 kV	Beam energy	50 MeV	
RF bucket height	> 0.990 %	Current	$5 \sim 50 \text{ mA}$	
Harmonics number	120	Pulse length	$5 \sim 100 \text{ ns}$	
Energy spread	8.41×10^{-4}	RF frequency	2,856 MHz	
Magnetic lattice	Triple Bend Cell x 4			

Table 3. Parameters of the Superbend

York type	C type	Length	< 950 mm
Peak field	> 5 T	Hight	< 3000 mm
Bending angle	12° (1.2 GeV)	Width	< 900 mm

BL8S2

Figure 4. Schematic view of the accelerators & beamlines