Central Japan Synchrotron Radiation Research Facility Project

Naoto Yamamoto¹, Y. Takashima¹, M. Katoh^{2,1}, M. Hosaka¹, K. Takami¹, H. Morimoto¹, Y. Hori³, S. Sasaki⁴, S. Koda⁵

T. Ito¹, I. Sakurai¹, H. Hara¹, W. Okamoto¹, N. Watanabe¹ and Y. Takeda¹

1. Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603 Japan,

2. UVSOR, Institute for Molecular Science, Okazaki, 444-8585 Japan, 3. High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan 4. JASRI/SPring-8, Sayo-gun, Hyogo 679-5198, Japan, 5. Saga Light Source, Tosu, Saga 841-0005, Japan E-mail : office@nusrc.nagoya-u.ac.jp, URL : http://www.nusrc.nagoya-u.ac.jp

Introductoin

A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan, and the prefectural government, industries, universities, and research institutes in the Aichi area are working together to realize this proposal. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV and the natural emittance of 53 nmrad. The configuration is based on four triple bend cells with twelve bending magnets. Four of them are 5 T superconducting ones and the critical energy is 4.8 keV.

Construction Schedule

Site formation for the buildings construction 2009. First synchrotron light 2012.

Top-up operation will be started in near future.

Management

This facility will be used also for industrial research and development. Aichi Science & Technology Foundation is responsible for the operation and management, and Nagoya University Synchrotron Radiation Research Center is responsible to run the facility and support the users technicalluy and scientifically.

HiSOR

Figure 1. Central Japan Synchrotron Radiation Facility and SR facilities in japan

Beamlines & Accelerators

SAGA Light Source

(1.4 GeV, 1.9 keV)

Figure 2. Spectra of photon flux from bending magnets

Table 1. Six beamlines constructed in the first phase						
Beamlines	Energy Range	Flux	Energy Resolution			
	(keV)	(photons/sec)	$(E/\Delta E)$			
Hard X-ray XAFS	5 - 20	1×10^{11}	7,000 @ 12 keV			
Soft X-ray XAFS	0.85 - 6	7×10^{10}	2,000 @ 3 keV			
VUV & Photoemission Spectroscopy	0.03 - 0.85	1×10^{13}	10,000 @ 200 eV			
Small angle X-ray Scattering	8.2	7×10^{10}	2,000 @ 8.2 keV			
X-ray Diffraction	5 - 20	1×10^{11}	7,000 @ 12 keV			
X-ray Fluorescence & Reflectivity	5 - 20	1×10^{11}	2,000 @ 12 keV			

Figure 3. Schematic view of BM front-ends.

Table2. Parameters of Accelerators

Storage Ring	
Beam energy	1.2 GeV
Circumference	72 m
Current	>300 mA
Natural emittance	53 nmrad
Betatron tune	(4.72, 3.23
RF frequency	500 MHz
RF Voltage	500 kV
RF bucket height	> 0.990 %
Harmonics number	120
Energy spread	8.41 x 10 ⁻⁴
Magnetic lattice	Trinle Ren

Booster synchrotron	
Max. beam energy	1.2 GeV
Circumference	48 m
Current	>10 mA
RF frequency	500 MHz
Injector linac	

Injector linac	
Beam energy	50 MeV
Current	$5 \sim 50 \text{ mA}$
Pulse length	$5 \sim 100 \text{ ns}$
RF frequency	2,856 MHz

Magnetic lattice Normal bend	Triple Bend Cell x 4 1.4 T, 39° x 8	Table 3. Parameters of the Superbend			
Supervenu		York type	C type	Length	< 950 mr
		Peak field	> 5 T	Hight	< 3000 m
		Bending angle	12º (1.2 GeV)	Width	< 900 mr

For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy.

Figure 4. Schematic view of the accelerators

The 10th International Conference on Synchrotron Radiation Instrumentation, Sep. 27-Oct. 2, 2009